Several different species of white grubs including Anomala orientalis, Ataenius spretulus, Blitopertha orientalis, Cotinus nitida, Cyclocephala borealis, Cyclocephala pasadenae, Cyclocephala hirta, Exomala orientalis, Hoplia philanthus, Maladera castanea, Melolontha melolontha, Phyllophaga Spp. and Rhizotrogus majalis are major pests of turf grass.
Read MoreHeterorhabditis zealandica
Entomopathogenic nematodes can even infect and kill citrus mealybugs /
Citrus mealybug Planococcus citri is a serious insect pest of many greenhouse plants as well as fruit crops in the field. There are different biological, chemical and cultural approaches available for the management of citrus mealybugs.
Read MoreEntomopathogenic nematodes for the biological control of False codling moth- Nematode information /
Entomopathogenic nematodes and False codling moth
A presence of entomopathogenic nematode species including Steinernema khoisanae, Steinernema yirgalemense, Steinernema citrae, Heterorhabditis bacteriophora and Heterorhabditis zealandica have been reported in citrus orchards in the Western Cape, Eastern Cape and Mpumalanga provinces of South Africa (Malan et al., 2011).
All the above nematode species have showed a very high virulence against false codling moth, Thaumatotibia leucotreta an economically important pest of citrus in South Africa. For example, S. yirgalemense can cause over 74% mortality of both larval and pupal mortality of false codling moth when applied at the rate of 50-200 infective juveniles/ larval or pupal stages of false codling moth.
Two entomopathogenic nematode species including S. yirgalemense and S. citrae were reported for the first time from South Africa (Malan et al., 2011).
Read following papers on entomopathogenic nematodes from South Africa
de Waal, J.Y., Malan, A.P. and Addison, M.F. 2011. Evaluating mulches together with Heterorhabditis zealandica (Rhabditida: Heterorhabditidae) for the control of diapausing codling moth larvae, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Biocontrol Science and Technology 21: 255-270.
de Waal, J.Y., Malan, A.P., Levings, J. and Addison, M.F. 2010. Key elements in the successful control of diapausing codling moth, Cydia pomonella (Lepidoptera: Tortricidae) in wooden fruit bins with a South African isolate of Heterorhabditis zealandica (Rhabditida: Heterorhabditidae). Biocontrol Science and Technology. 20: 489-502.
Hatting, J., Stock, S.P. and Hazir, S. 2009. Diversity and distribution of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae) in South Africa. Journal of Invertebrate Pathology 102: 120-128.
Malan, A.P., Knoetze, R. and Moore, S.D. 2011. Isolation and identification of entomopathogenic nematodes from citrus orchards in South Africa and their biocontrol potential against false codling moth. Journal of Invertebrate Pathology 108: 115-125.
Malan, A.P., Nguyen, K. B. and Addison, M. F. 2006. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from the southwestern parts of South Africa. African Plant Protection 12: 65-69.
Malan, A.P., Nguyen, K.B., de Waal, J.Y. and Tiedt, L. 2008. Heterorhabditis safricana n. sp (Rhabditida : Heterorhabditidae), a new entomopathogenic nematode from South Africa. Nematology 10: 381-396.
Quantitative real-time PCR techniques for detecting and quantifying entomopathogenic nematodes from the soil samples /
Recently, a quantitative real-time PCR (qPCR) technique has been developed by Campos-Herrera et al (2011) for detecting and quantifying entomopathogenic nematodes including Steinernema diaprepesi, Steinernema riobrave, Heterorhabditis indica, Heterorhabditis zealandica, Heterorhabditis floridensis and an undescribed species in the S. glaseri group from soil samples. Read following paper for a detail protocol of quantitative real-time PCR (qPCR) technique
Campos-Herrera, R., Johnson, E. G, El-Borai, F. E., Stuart, R. J., Graham, J. H. and Duncan, L. W.2011. Long-term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real-time PCR. Annals of Applied Biology 158: 55-68.
Biological control of grape root borer Vitacea polistiformis using entomopathogenic nematodes. /
Efficacy of two entomopathogenic nematodes including Heterorhabditis zealandica strain X1 and H. bacteriophora Strain GPS11 was studied in the field against grape root borer Vitacea polistiformis (Williams et al., 2010). This borer can damage roots of both wild and cultivated Vitis and Muscadinia grapes and is considered as a major pest of grapes grown in the eastern United States. According to Williams et al. (2010), both H. zealandica and H. bacteriophora can cause up to 92% control of grape root borer and they can also persist in the soil for a extended period after their application.
Read following literature for more information on interaction between entomopathogenic nematodes and the grape root borers.
Williams, R.N., Fickle, D.S., Grewal, P.S. and Dutcher, J. 2010. Field efficacy against the grape root borer, Vitacea polistiformis (Lepidoptera: Sesiidae) and persistence of Heterorhabditis zealandica and H. bacteriophora (Nematoda: Heterorhabditidae) in vineyards. Biological Control. 53: 86-91.
Williams, D.S. Fickle, P.S. Grewal and J.R. Meyer. 2002. Assessing the potential of entomopathogenic nematodes to control the grape root borer, Vitacea polistiformis (Lepidopetera: Sesiidae) through laboratory and greenhouse bioassays. Biocontrol Science and Technology 12: 35-42.